The Book of Five Rings

The Book of Five Rings is a parametric model that allows you to customize your own set of rings by entering parameters.  The 6 focal parameters are the Ring Size (interior diameter), the Ring Thickness, the Ring Width (interior surface), the Outer Surface Width, Outer Surface Placement (variable beveling), and the Hole Diameter.

While you can go into the parametric model and vary a lot more options, I choose these six to keep the model simple and to make sure that the variation range within the model would still allow the group to have a cohesive aesthetic.

The Title was taken from a book written in 1645 by the famous swordsman Miyamoto Mushashi.  He was a Japanese ronin who never lost a duel.  Into his elder years, he wrote the Book of Five Rings as a manual of how to understand and defeat your opponent.  He also founded a school, Niten Ichi Ryu, which is a two-sword fighting technique.  His teachings spoke of being adaptable and having variability.

Each of the rings is sized for each one of my five fingers. The parameters that were varied are indicated and I plan on making it an open source application that will be available on GitHub for anyone who wants to play with the code to make their own rings.  Also, Shapeways allows 3D printing in silver.  Which I also hope to look into as the summer progresses.

http://www.keithius.com/wp

The Book of Five Rings-01

The Book of Five Rings-02 The Book of Five Rings-03 The Book of Five Rings-04 The Book of Five Rings-05 The Book of Five Rings-06 The Book of Five Rings-07 The Book of Five Rings-08

The Book of Five Rings-10

Final- Couture Line

arm31 bodice 13 helmet 11 neck 14 drape1 all5

SPIN SCRIPT STRUCTURE SCRIPT

My project was to create a couture line using the concept of structure and skin.  Using examples from existing lines by various designers, the final pieces were a bodice, drape, arm cuff, neck cuff and helmet.

True to the concept of the project (structure and skin), two Grasshopper definitions were developed to produce an underlying structure and surface for each couture piece.  Using a base model of a human form (in iges format), iso curves were extracted and other curves were drawn on the human model surface to create lofted breps for each piece which were deconstructed to extract the surfaces for the Grasshopper definitions.  Something I found to be particularly helpful was that these initial breps did not always translate well, had joints, etc.  In some cases, I took the surfaces after they were built, exploded them in Rhino and used the MergeSrf tool to merge the exploded surfaces.  This seemed to solve the problem to get a smooth mapping of the definition as opposed to a disjointed one due to the surface geometry.

The structure definition is based on a voronoi with a number of points defining and being added to the voronoi as a variable.  The voronoi curves were extruded and thickened using Weaverbird.

The surface definition is based on a spinning definition using points in the Rhino model to set up charges and fields for the spin as both visible and invisible forces.   The variables in this definition are the strength of the charges as well as the radius of the fields.  Both the structure and the surface definitions were confined to areas (defined by the rectangle) that were subsequently mapped onto the lofted brep surfaces generated from the body model as previously noted.

In the end, the couture pieces have a netted, voronoi structure which is to be concealed by the skin but exposed when the surface breaks-much like how the body can be artfully exposed through the strategic design of clothing.  The skin/surface is a spiraling, wavy flow on top of the structure-a metaphor to the decorative concealer of clothing that can deviate from but is still extracted from the surface of the body.  What is interesting to me about the definition is the way it reacts to the brep surface twisting as it spirals around the form as evident in some detail images.

video of the definitions used before mapping:

https://www.youtube.com/watch?v=he3uxQYuPDA

video of the structure definition applied to the brep surface base (hidden):

https://www.youtube.com/watch?v=uP4EyvhukQQ

Final presentation:

Final Project Parametrics

Chinese Character Inspired Parametric Shoe Design

My project is a family of shoes that is inspired by the molecularity of Chinese characters. Each shoe is covered with patterns made of a single Chinese character. As the Chinese character evolves from one to another, not only the meaning of the character changes, so does the complexity of the shoe form. Through this project, I would like to teach others about the fascinating nature of written Chinese, at the same time celebrating my Asian heritage.

Inspiration:

final presentation final presentation2

Animation:

GIF-1 GIF-2 GIF-3

Final Design:

1 2 3

Photograph:

IMG_2189

Parametric Light Diffusers

For my parametric project I chose to work on light diffusers. The three driving parameters are mesh edge length, a graph mapper graph, and the domain maximum number. By changing these parameters I was able to adjust the size of the openings within the body of the light diffuser, the change in scale of the openings from top to bottom, and the maximum thickening of the material.

ligh fixture.10.blue ligh fixture.9.pinkflat ligh fixture.6.teal ligh fixture.5.orange ligh fixture.2.green

Product Families – Bracelets

The product family shears same design space in Grasshopper. All members come from the same definition. I was able to create multiple variations moving  sliders.

Deffinition

The project  aims to represent the frozen surfaces.How the surface changes the shape according to level of cold.  First shape I tried to make simple and created the gradient in between five family members. Starting from first it curves slowly and also grows as a shape. The structure inside the shape, introduces the ornament of the molecule in different density. I tried to create different chemical conditions fitting the shape of the bracelet.
Bracelet shape was created in Grasshopper,connected to Mesh settings, I can control density using the sliders..All the member of the family is printed by the 3D printer.

IMG_3870 IMG_3873_2

Screen Shot 2015-05-14 at 8.45.57 PMIMG_3860_2IMG_3857_2IMG_3853 copyIMG_3855_2 copy

IMG_3854_2

Final Product Families

The Product Families Assignment first got us thinking about a definition that was able to create multiple variations with only the moving of sliders. When we were asked to think about a possible object to create for this, I wanted to make sure to keep it simple, yet elegant. Keeping this in mind, I thought of the simplest forms that we are used to and concluded with parallelograms. Making vessels with varying number of points began to drive the definition, along with a few other factors.

COUNT_SLIDER   COUNT SLIDER

SHIFT_SLIDER   SHIFT SLIDER

SCALE_SLIDER   SCALE SLIDER

FINAL MODEL IMAGE   FINAL IMAGE

For full definitions, follow link below:

FINAL PRESENTATION

Family of Planters 3.0

Family of Planters is a parametrically designed line of planters.

Every plant has different sun or shading needs. People usually use half-shades and screens to protect outdoor plants as well as window pots. These elements are not always well designed, so I am proposing a system where the shade is incorporated to the planter. These products will accommodate 5 different shade requirements for various plant species.

Here you can watch the video of the grasshopper file definition and take a look at the presentation. Enjoy!

Aldana.-

Family of Products.005

Family of Products.005b Family of Products.006 Family of Products.007 Family of Products.008 Family of Products.009 Family of Products.010 Family of Products.011 Family of Products.012 Family of Products.013 Family of Products.014 Family of Products.015 Family of Products.016 Family of Products.017 Family of Products.018 Family of Products.019 Family of Products.020 Family of Products.021 Family of Products.022 Family of Products.023 Family of Products.024